Time-modulated arrays for smart WPT

Diego Masotti

RFCAL: RF circuit and antenna design Lab
DEI - University of Bologna, Italy
Graz, March 30, 2015

Outline

- Time-modulated arrays (TMAs) architecture
- TMAs possible applications
- Description of the nonlinear/electromagnetic CAD tool for time-modulated array (TMA) analysis/design
- Smart WPT with TMA

TMA architecture

TMA regime

- $\mathrm{T}_{\mathrm{M}}, \mathrm{f}_{\mathrm{M}}$: period and frequency of switch modulation
- $\mathrm{T}_{0}, \mathrm{f}_{0}$: period and frequency of sinusoidal RF carrier

$$
A F(\theta, \phi, t)=\sum_{h=-\infty}^{\infty} A F_{h}(\theta, \phi, t)=\sum_{h=-\infty}^{\infty} e^{j 2 \pi\left(f_{0}+h f_{M}\right) t} \sum_{k=0}^{n-1} \Lambda_{k} u_{h k} e^{j k \beta L \cos \psi}
$$

The superimposed switch modulation makes the array able to radiate not only at the fundamental carrier ($h=0$), but also at the sideband harmonics ($h \neq 0$)

TMA radiation

TMA high reconfigurability

- The use of time as a further design parameter allows an almost unlimited control sequence combinations in TMAs
- The ease of implementation (no phase-shifters)
- The fast software control

- Make TMA a versatile and adequate radiation system for modern wireless applications (e.g. Software Defined Radio)

TMA applications

- Reduce self-interference in the broadside direction $\left(\theta=0^{\circ}\right)$ due to the desired signal received @ $\mathrm{f}_{0} \pm \mathrm{hf}_{\mathrm{M}}(\mathrm{h} \neq 0)$ (Sideband radiation suppression)

L. Poli, P. Rocca, L. Manica, A. Massa, "Pattern synthesis in time-modulated linear arrays through pulse shifting," IET Microwaves, Ant. \& Prop., vol. 4, no. 9, pp. 1157-1164, Sept. 2010

TMA applications

- Suppress undesired interference coming from $\theta \neq 0^{\circ}$ $@ f_{0} \pm \mathrm{hf}_{\mathrm{M}}(\mathrm{h}=0,1,2, \ldots)$ (Harmonic nulling)

TMA applications

- Exploitation as a multi-channel system (Harmonic beamforming)

TMA optimization

- TMA design methods focus on control sequence optimization Variable Aperture Size (w. н. kummer etal. 1963) Ideal radiating elements Ideal control switches
 design parameter: impulse length

Binary Optimized Time Sequences (S. Yang et al. 2005)

design parameter: impulse sub-intervals

Pulse Shifting (L. Poli etal. 2010)

design parameters: impulse length switch-on instant

NL/EM TMA co-simulation

Piecewise Harmonic-Balance method

$\square \begin{aligned} & \text { Nonlinear } \\ & \text { subnetwork }\end{aligned}$

$50 \Omega 100 \mathrm{nH}$ D1 D3 10 D5 D7 D9 D11 D13 D15 $100 \mathrm{nH} 50 \Omega$

Linear subnetwork

- A nonlinear subnetwork, containing the diodes
- A linear subnetwork, including
- the EM-based part (the array and the feeding network, in the present case)
- the lumped components used for biasing and DC-blocking

Symmetrical bias

NL/EM TMA co-simulation

Modulated far-field evaluation

fast carrier time

harmonics of the unmodulated regime

$$
\mathrm{T}_{\mathrm{M}}=2 \pi / \omega_{\mathrm{M}} \gg \mathrm{~T}_{0}=2 \pi / \omega_{0}
$$

circuit-envelope HB

 envelope (or modulation law)
slow modulation time
no. of harmonics for modulation spectrum description

NL/EM TMA co-simulation

Field envelope at the fundamental harmonic
$\mathbf{E}_{1}\left(r, \theta, \phi ; t_{M}\right)=\frac{\exp (-j \beta r)}{r} \bullet$

- $\sum_{i=1}^{n_{A}}\left[\hat{\theta} A_{\theta}^{(i)}\left(\theta, \phi ; \omega_{0}\right)+\hat{\phi} A_{\phi}^{(i)}\left(\theta, \phi ; \omega_{0}\right)\right] I_{A, 1}^{(i)}\left(t_{M}\right)-$
$-j \frac{1}{r}\left[\left.\sum_{i=1}^{n_{A}} \frac{\partial\left\{\exp (-j \beta r)\left[\hat{\theta} A_{\theta}^{(i)}(\theta, \phi ; \omega)+\hat{\phi} A_{\phi}^{(i)}(\theta, \phi ; \omega)\right]\right\}}{\partial \omega}\right|_{\omega=\omega_{0}} \bullet \frac{d I_{A, 1}^{(i)}\left(t_{M}\right)}{d t_{M}}\right]$
- $A_{\theta}^{(i)}, A_{\phi}^{(i)} \square$ EM data-base
- are the scalar components of the normalized field
- are generated by EM simulation with only the i-th monopole excited by a unit-current sinusoidal source of angular frequency ω_{0}
- The EM analyses are carried out once for all

Co-simulation results

- 16-monopole planar linear array operating at $\mathrm{f}_{0}=2.45 \mathrm{GHz}$
- The substrate is a 0.635 mm -thick Taconic RF60A $\left(\varepsilon_{\mathrm{r}}=6.15\right.$, $\tan \delta=0.0028$ @ 10GHz)

TMA with

 Dolph-Chebyshev pattern- Sinusoidal carrier $f_{0}=2.45 \mathrm{GHz}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}$
- Switch modulation frequency $\mathrm{f}_{M}=10 \mathrm{kHz}\left(\mathrm{f}_{M} \ll \mathrm{f}_{0}\right)$
- Rectangular pulses with repetition period $T_{M}=0.1 \mathrm{~ms}$ and amplitude $V_{\text {bias }}=3 \mathrm{~V}$ are applied at the 8 bias ports (symmetrical excitation)
- A uniform sequence of $N_{S}=1000$ envelope sampling instants t_{n} is chosen within the pulse repetition period
- A VAS pulse sequence reproducing the DolphChebyshev pattern with side lobe level (SLL) = $-30 d B$ is chosen

Radiation patterns

$\boldsymbol{E}_{k}\left(t_{M}\right)=\sum_{h=-N_{B}}^{N_{B}} \boldsymbol{E}_{k h} \exp \left(j h \omega_{M} t_{M}\right)$

- $k=1, h=0: 2.45 \mathrm{GHz}$ fundamental
- $\mathrm{k}=1, \mathrm{~h}=1: 2.45001 \mathrm{GHz}$ first harmonic
- $\mathrm{k}=1, \mathrm{~h}=2: 2.45002 \mathrm{GHz}$ second harmonic

Known problem of VAS sequences: unwanted sideband radiation

Modulation frequency range

- Control sequence modulation frequency $\left(\mathrm{f}_{\mathrm{M}}\right)$ variation

- High values of f_{M} result in the gradual disappearance of some commutations and unwanted SLL increase

$\mathrm{f}_{\mathrm{M}}{ }^{\max } \approx 100 \mathrm{kHz}$

Nonlinear diodes effect

- Input power level (P_{RF}) variation

- At high power levels the bias voltage is completely overrun, because a bigger portion of RF signal is rectified by the nonlinear diodes and superimposed to bias $ل$

TMA with

Pulse Shifting pattern

- A symmetric PS pulse sequence with $\mathrm{SLL}=-30 \mathrm{~dB}$ is chosen

- Note that the time-consuming EM-based database consisting in the $A_{\theta}^{(i)}, A_{\phi}^{(i)}$ coefficients is always the same

Smart WPT with TMA

- The versatility of TMAs allows a smart transfer of power by means of a two-step procedure
- Scenario: room with randomly placed tagged objects
- $1^{\text {st }}$ step: Localization of tags
- the sole two-inner-element sub-array is operating in this phase (the other 14 peripheral switches are left open)
partial ground plane

nonlinear switches

Localization of tags

- By properly driving the switches of an array of two isotropic elements the Δ pattern can be steered:

Sum (Σ) pattern @ f_{0}

Difference (Δ) pattern @ $f_{0}+f_{M}^{\theta}$

Localization of tags

- By properly driving the two inner switches of two real dipoles:

Received Maximum Power Ratio $\operatorname{MPR}(\theta)=\Sigma_{R S S I}^{d B}(\theta)-\Delta_{R S S I}^{d B}(\theta)$

$\theta_{\text {peak }}^{i} ; i=1, \ldots, N_{\text {tag }}$ List of tags position

$-\Sigma$	$-\Delta(\mathrm{d}=0)$	$-0-\Delta(\mathrm{d}=8 \%)$
$-\square-\Delta(\mathrm{d}=16 \%)$	$-\Delta \Delta(\mathrm{d}=24 \%)$	$-\Delta(\mathrm{d}=32 \%)$

Transfer of power to tags

- Once the tags position has been recordered:
- $2^{\text {nd }}$ step: Transfer of power to tags
- The whole 16-element array is driven by proper pre-loaded control sequences involving all the switches
- Possible decision rule:
i. split the scanning region ($\theta \in\left[-60^{\circ} \div 60^{\circ}\right]$) into sectors of amplitude equal to the half power beam width (HPBW)
ii. for each $\theta_{\text {peak }}$ falling in the sector centered around $\theta_{\text {HPBW }}$, the preloaded control sequence pointing the first harmonic to the $\theta_{\text {HPBW }}$
 direction is used

Transfer of power to tags

- Case 1: $\theta_{\text {peak }}$ falling into the sectors centered around $\theta_{\text {HPBW }}=-30^{\circ}, 0^{\circ}, 30^{\circ}$

Simultaneous powering of the 3 tags

Transfer of power to tags

- Case 2: $\theta_{\text {peak }}$ falling into the sectors centered around $\theta_{\text {HPBW }}=-20^{\circ}, 20^{\circ}$

Fundamental radiation is switched-off

ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA

Diego Masotti

University of Bologna diego.masotti@unibo.it
www.dei.unibo.it

